Intrinsic universality and the computational power of self-assembly
نویسنده
چکیده
Molecular self-assembly, the formation of large structures by small pieces of matter sticking together according to simple local interactions, is a ubiquitous phenomenon. A challenging engineering goal is to design a few molecules so that large numbers of them can self-assemble into desired complicated target objects. Indeed, we would like to understand the ultimate capabilities and limitations of this bottom-up fabrication process. We look to theoretical models of algorithmic self-assembly, where small square tiles stick together according to simple local rules in order to carry out a crystal growth process. In this survey, we focus on the use of simulation between such models to classify and separate their computational and expressive powers. Roughly speaking, one model simulates another if they grow the same structures, via the same dynamical growth processes. Our journey begins with the result that there is a single intrinsically universal tile set that, with appropriate initialization and spatial scaling, simulates any instance of Winfree's abstract Tile Assembly Model. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system in a very direct way. From there we find that there is no such tile set in the more restrictive non-cooperative model, proving it weaker than the full Tile Assembly Model. In the two-handed model, where large structures can bind together in one step, we encounter an infinite set of infinite hierarchies of strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that simulates any tile assembly system. We find another tile that aperiodically tiles the plane (but with small gaps). These and other recent results show that simulation is giving rise to a kind of computational complexity theory for self-assembly. It seems this could be the beginning of a much longer journey, so directions for future work are suggested.
منابع مشابه
Efficient Squares and Turing Universality at Temperature 1 with a Unique Negative Glue
Is Winfree’s abstract Tile Assembly Model (aTAM) “powerful?” Well, if certain tiles are required to “cooperate” in order to be able to bind to a growing tile assembly (a.k.a., temperature 2 self-assembly), then Turing universal computation and the efficient self-assembly of N ×N squares is achievable in the aTAM (Rotemund and Winfree, STOC 2000). So yes, in a computational sense, the aTAM is qu...
متن کاملIntrinsic Universality in Self-Assembly
We show that the Tile Assembly Model exhibits a strong notion of universality where the goal is to give a single tile assembly system that simulates the behavior of any other tile assembly system. We give a tile assembly system that is capable of simulating a very wide class of tile systems, including itself. Specifically, we give a tile set that simulates the assembly of any tile assembly syst...
متن کاملQuantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly
Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β...
متن کاملIntrinsic universality in tile self-assembly requires cooperation
We prove a negative result on the power of a model of algorithmic self-assembly for which it has been notoriously difficult to find general techniques and results. Specifically, we prove that Winfree’s abstract Tile Assembly Model, when restricted to use noncooperative tile binding, is not intrinsically universal. This stands in stark contrast to the recent result that, via cooperative binding,...
متن کاملThe Simulation Powers and Limitations of Higher Temperature Hierarchical Self-Assembly Systems
In this paper, we extend existing results about simulation and intrinsic universality in a model of tile-based self-assembly. Namely, we work within the 2-Handed Assembly Model (2HAM), which is a model of self-assembly in which assemblies are formed by square tiles that are allowed to combine, using glues along their edges, individually or as pairs of arbitrarily large assemblies in a hierarchi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 373 2046 شماره
صفحات -
تاریخ انتشار 2015